International Journal on Biological Sciences # CLIMATE CHANGE AND VECTOR BORNE DISEASES: A GLOBAL AGENDA Bishop Debnath¹ and Saikat Kumar Basu²* ¹Department of Agriculture and Food Engineering, IIT Kharagpur, West Bengal, India ²PFS, Lethbridge, Albert, Canada Review Paper #### **ABSTRACT** Vector-borne diseases are illnesses caused by pathogens and parasites transmitted by vectors, which are living organisms that can transmit infectious diseases between humans or from animals to humans. Common vectors include mosquitoes, ticks, flies, sandflies, fleas, and aquatic snails. Prevention and control strategies for vector-borne diseases often include vector control measures (e.g., insecticide-treated bed nets, indoor residual spraying, environmental management), vaccination (where available), public health education, and personal protective measures (e.g., use of insect repellent, wearing long-sleeved clothing). No. of Pages: 6 References: 9 Keywords: Vector, diseases, Climate Change, mosquitoes, ticks, flies, sandflies, fleas. #### INTRODUCTION The survival of the world is seriously threatened by climate change. Goal 13 of the Sustainable Development agenda, which addresses poverty and health care, calls for immediate action against climate change. This relationship intensifies the spread of vector-borne illnesses like malaria, which primarily affects sub-Saharan Africa. Climate change also affects other neglected tropical diseases, such as leishmaniasis and infections spread by bloodsucking insects (Tambe et al., 2024). Heatwaves and other extreme weather conditions put human health at risk and put a pressure on healthcare systems. Research focusing on community-driven strategies to increase resilience to climate impacts on health is currently given priority. # Community centric research driven hypothesis: In order to successfully address health issues, this involves doing biomedical research with a local focus, drawing inspiration from successful communityengagedstudies such as those pioneered in urban geography. Using techniques from Bunge, Warren, and other sources, we present five strategies to improve community-beneficial research on the effects of climate change on vector-borne illnesses: a) Recognize the localized circumstances of illness transmission, give knowledge a practical application, b) think about variables impacting vectors besides climate, c) extend the reach of knowledge derived from research, d) give communities the power to take back theirresources (Chaves et al., 2024). By encouraging efficient information translation, these strategies support the improvement of community health and the decrease of disease. They can be widely used to address a variety of health issues, combining statistical data and community insights for thorough comprehension and action. #### Vector-borne disease: Infections known as vector-borne diseases are brought to people by pathogens that are carried from afflicted animals by insects like ticks or mosquitoes. Yellow fever, dengue, Zika, malaria, and Chikungunya are common examples. Together, these illnesses account for more than 17% of all infectious diseases and cause over 700,000 fatalities annually (George et al., 2024). Here are some examples of vector-borne diseases: **Malaria:** Transmitted by Anopheles mosquitoes, caused by Plasmodium parasites. **Dengue:** Caused by the dengue virus, transmitted by Aedes mosquitoes. **Zika Virus:** Transmitted primarily by Aedes mosquitoes. Chikungunya: Transmitted by Aedes mosquitoes. West Nile Virus: Spread by Culex mosquitoes. **Lyme Disease:** Caused by the bacterium Borrelia burgdorferi, transmitted by Ixodes ticks. **Yellow Fever:** Transmitted by Aedes and Haemagogus mosquitoes. **Japanese Encephalitis:** Transmitted by Culex mosquitoes. **Leishmaniasis:** Caused by Leishmania parasites, transmitted by sandflies. **Chagas Disease:** Caused by Trypanosoma cruzi, transmitted by triatomine bugs. Table 1: Vector-borne diseases and their causative organisms and other general information. | Disease | Vector | Causative organism | Host | Symptoms | Area | Treatment | |--|---|--------------------------------------|-------------------------------------|--|---|---| | African horse
sickness | Culicoid
midge | Orbivirus
(virus) | Equids | Fever, lung,
heart or
mucous
membrane
symptoms. | Europe, Africa | Vaccination | | Babesiosis | Tick | Babesia
(protozoan) | Humans,
rodents, dogs,
cattle | Fever,
hemolytic
anemia, chills,
sweating,
thrombocy-
topenia | South Europe,
Central United
States | Antibiotics | | Bluetongue
disease | Culicoid midge | Orbivirus
(virus) | Cattle, sheep | Fever,
salivation,
swelling of
face and
tongue | Europe,
Africa | Vaccination | | Chagas disease
(American
trypano-
somiasis) | Various
assassin bugs
of subfamily
Triatominae | Trypano-
somacruzi
(protozoan) | | Mild symptoms,
then chronic
heart or brain
inflammation | Central and
South America | Antiparasitic
drugs; treat-
ment of
symptoms | | Chikungunya | Mosquito | Chikungunya
virus | Human | Abdomen pain, eye pain, joint pain, muscle pain, fever, chills, fatigue, headache, skin rash | Asia | Antibiotics | | Dengue fever | Mosquito | Flavivirus
(virus) | | Fever then arthritis | (Sub) tropics
and South
Europe | Observation/
supportive
treatment | | Disease | Vector | Causative organism | Host | Symptoms | Area | Treatment | |--|---|--------------------------------------|--|--|---|---| | African horse sickness | Culicoid
midge | Orbivirus
(virus) | Equids | Fever, lung,
heart or
mucous
membrane
symptoms. | Europe, Africa | Vaccination | | Babesiosis | Tick | Babesia
(protozoan) | Humans,
rodents, dogs,
cattle | Fever,
hemolytic
anemia, chills,
sweating,
thrombocy-
topenia | South Europe,
Central United
States | Antibiotics | | Bluetongue
disease | Culicoid midge | Orbivirus
(virus) | Cattle, sheep | Fever,
salivation,
swelling of
face and
tongue | Europe,
Africa | Vaccination | | Chagas disease
(American
trypano-
somiasis) | Various
assassin bugs
of subfamily
Triatominae | Trypano-
somacruzi
(protozoan) | | Mild symptoms,
then chronic
heart or brain
inflammation | Central and
South America | Antiparasitic
drugs; treat-
ment of
symptoms | | Chikungunya | Mosquito | Chikungunya
virus | Human | Abdomen pain,
eye pain, joint
pain, muscle
pain, fever,
chills, fatigue,
headache, skin
rash | Asia | Antibiotics | | Dengue fever | Mosquito | Flavivirus
(virus) | | Fever then arthritis | (Sub) tropics
and South
Europe | Observation/
supportive
treatment | | Dirofilariasis | Mosquito | Dirofilaria | Dogs, wolves,
coyotes, foxes,
jackals, cats,
seals, sea lions,
muskrats, bears,
rabbits,
raccoons,
reptiles,
beavers, ferrets,
monkeys, | Chest pain,
fever, pleural
effusion, cough,
nodules under
the skin or
lung
granulomas | Worldwide | Heartworm
medicine | | Tick-borne
encephalitis | Tick | Tick-borne
encephalitis
virus | | Ill with flu
then meningitis | Central and
North Europe | Prevention and vaccination | | Heartland virus
disease | Tick | Heartland
virus | | Fever, lethargy, headache, myalgia, diarrhea, nausea, loss of appetite, anorexia, thrombocytopenia, leukopenia, arthralgia | Missouri and
Tennessee,
USA | Supportive treatment | | Leishmaniasis | Sandfly | <i>Leishmania</i> (protozoan) | | Fever, damage
to the spleen
and liver, and
anaemia | South
hemisphere
and
Mediterranean
Countries | Treatment of infected | |---|-------------------|--|----------------------------------|---|--|---| | Lyme disease | Tick | Borrelia
burgdorferi
(bacterium) | Deer, human | Bull's-eye
pattern skin
rash around
bite, fever,
chills, fatigue,
body aches,
headache, joint
pain. Some-
times neuro-
logical
problems. | Europe, North
Africa, and
North America | Prevention and antibiotics | | Malaria | Mosquito | Plasmodium
(protist) | Human | Headache then
heavy fever | (Sub) tropics | Prevention and anti-malaria | | Plague | Flea | | Rats, Human | Fever, weakness and headache. In the bubonic form there is also swelling of lymph nodes, while in the septicemic form tissues may turn black and die, and in the pneumonic form shortness of breath, cough and chest pain may occur | Central Asia,
India, US,
Africa, Peru,
Brazil | Antibiotics | | Pogosta disease
Synonyms:
Karelian fever
Ockelbo disease
Sindbis fever | Mosquito | Sindbis virus | | Skin rash,
fever, in severe
cases - arthritis | Scandinavia,
France, Russia | unknown | | Rickettsial
diseases:
Typhus
rickettsialpox
Boutonneuse
fever African
tick bite fever
Rocky
Mountain
spotted fever
etc. | Tick, mite, lice | Rickettsia
species
(bacteria) | | Fever with
bleeding
around the bite | Global | Prevention and antibiotics | | Tularemia | Deer flies, ticks | Francisella
tularensis
(bacterium) | Birds,
lagomorphs,
rodents | Skin ulcer,
swollen and
painful lymph
glands, fever,
chills headache,
exhaustion | North America | Streptomycin,
gentamicin,
doxycycline,
ciprofloxacin | | African
trypanosomiasis
(sleeping
sickness) | Tsetse fly | Trypanosoma
brucei
(protozoan) | Wild mammals,
cattle, human | Fever, joint
pain, swollen
lymph nodes,
sleep
disturbances | Sub-Saharan
Africa | Various drugs | |--|------------|--------------------------------------|--------------------------------|--|---|--| | Lymphatic filariasis | Mosquito | Wuchereria
bancrofti | Human | Fever, swelling
of limbs,
breasts, or
genitalia | Africa, Asia. | Various drugs | | West Nile fever | Mosquito | West Nile virus | Birds, human | Fever,
headaches,
skin rash, body
aches. | Africa, Asia,
North America,
South and
East Europe | None | | Yellow fever | Mosquito | Yellow
fever virus | Human | Muscle pain,
abdomen pain,
loss of appetite,
fatigue,
jaundice, fever,
chills, head-
ache, nausea,
vomiting,
bleeding,
delirium | South America,
Africa | Yellow
fever vaccine | | Zika fever | Mosquito | Zika virus | Monkeys,
human | Fever, eye pain,
conjunctivitis,
rash, headache,
vomiting, joint
pain, muscle
pain, fatigue,
chills, sweating,
loss of appetite | South America,
Mexico, Asia,
Africa | Decreasing
mosquito bites,
condoms | | Crimean Congo
hemorrhagic
fever | Tick | CrimeanCongo
hemorrhagic
fever | Human
Dog Cat | Fever, muscle
ache, dizziness,
neck pain,
backache,
headache, sore
eyes and
photophobia
(sensitivity to
light) | | | ## Climate change impacting vector-borne diseases: Almost all diseases spread by vectors have a climatic component. The hosts, vectors, and pathogens that cause these illnesses are extremely sensitive to their surroundings. Because of this sensitivity, variations in precipitation and temperature brought on by climate change can have a big impact on the spread of diseases carried by vectors. There are three main ways that climate change affects vector-borne illnesses: 1. Increased appropriateness of habitat for vectors: Higher temperatures have the potential to increase the geographic range in which vectors such as ticks and mosquitoes can thrive and proliferate. Droughts can also produce breeding pools from previously flowing water, while increased rains can increase the number of breeding sites by creating more standing water. - Extended seasons of disease transmission: Temperatures that are warmer are more likely to provide an environment that is favorable for the spread of disease, which could lead to longer seasons of disease transmission. - 3. Modification of vector behavior: Variations in temperature have the ability to alter the ways that vectors bite. For example, warmer temperatures have the potential to alter mosquito biting habits, decreasing the efficacy of protective measures like bed nets (Carnaghi *et al.*, 2024). It is difficult to fully attribute these effects to climate change, though, because human mobility, control efforts, and changes in land use all have a big impact on how diseases spread and where vectors are distributed. ### Risking factors: According to a 2022 study published in The Lancet Planetary Health, by 2070, an additional 4.7 billion individuals may be more susceptible to dengue and malaria as a result of climate change (El-Ansary, 2024). Human migration has been the main factor in dengue's global spread since the 1990s, but by 2030, climate change is expected to overtake human migration as the main cause. By the end of the century, dengue fever is predicted by the Intergovernmental Panel on Climate Change to have longer seasons and a wider geographic distribution, potentially infecting billions more people across Asia, Europe, Central and South America, and sub-Saharan Africa (Paul, 2024). Similarly, as favorable habitats for disease transmission grow due to rising climates, approximately 1.3 billion additional individuals may be exposed to Zika, another vector-borne illness, by 2050(Michaud et al., 2024). But certain areas might get too hot for mosquitoes, which are necessary for the spread of Zika and other various illnesses. The tickborne encephalitis and Lyme disease carriers, ticks, are multiplying as a result of warmer winters brought on by global warming (Pustijanacet al., 2024). Ticks that spread tropical diseases have even survived German winters, suggesting that they may continue to go northward into uncharted territory. ## Probable preventive measures: Prompt action is necessary to limit the danger of vector-borne diseases that are made worse by climate change (Githeko, 2024). Making the switch to clean, renewable energy is essential to reducing climate impacts. But adaptive strategies are also required: - 1. Make sure that everyone has access to medical treatment and illness management. - 2. Improve disease surveillance by community monitoring and health education to identify outbreaks early. - 3. Reduce your exposure to vectors by utilizing techniques including pesticides, window and door screens, protective clothes, and habitat alteration. - 4. Utilize cutting-edge technologies to hasten the development of vaccines. - 5. Give management of wetlands first priority, and get rid of vector breeding grounds close to populated areas. - 6. Investigate novel vector control tactics, such as using mosquitoes contaminated with Wolbachia. These actions are essential for protecting public health in the face of rising vector-borne disease threats associated with climate change. #### REFERENCES - 1. Chaves, Luis Fernando, et al. "Communityserving research addressing climate change impacts on vector-borne diseases." *The Lancet Planetary Health* 8.5 (2024): e334-e341. - 2. **Tambe, Srushti**, et al. "Revolutionizing Leishmaniasis Treatment with Cutting Edge Drug Delivery Systems and Nanovaccines: An Updated Review." ACS Infectious Diseases (2024). - 3. **George, Angella M.**, et al. "Climate change and the rising incidence of vector-borne diseases globally." *International Journal of Infectious Diseases* 139 (2024): 143-145. - 4. **El-Ansary**, **Hisham**. "Perspectives on the interconnectedness of human, animal, and environmental health." *Routledge Handbook of Climate Change and Health System Sustainability* (2024). - 5. **Michaud, Allincia**, et al. Global Health Security: Contemporary Considerations and Developments. BoD–Books on Demand, 2024.\ - 6. **Pustijanac, Emina**, et al. "Tick-Borne Bacterial Diseases in Europe: Threats to public health." European Journal of Clinical Microbiology & Infectious Diseases (2024): 1-35. - Githeko, Andrew K. "Responding to Climate Change in the Health Sector, Kenya." Climate Change and Human Health Scenarios: International Case Studies. Cham: Springer Nature Switzerland, 2024. 303-316. - 8. **Carnaghi, Manuela**, *et al.* "Visual and thermal stimuli modulate mosquito-host contact with implications for improving malaria vector control tools." *Iscience* 27.1 (2024). - 9. **Paul, Jaishree**. "Introduction to Infectious Diseases." *Disease Causing Microbes*. Cham: Springer International Publishing, 2024. 1-63.