

International Journal on Environmental Sciences 13(1), January-June 2022, pp. 35-42 ISSN No.: 0976-4534

STATUS OF PLANT BIODIVERSITY IN WAGHUR RIVER BASIN OF KHANDESH REGION IN MAHARASHTRA

Abhijit S. Thorat¹, Shridhar K. Jadhav² and S. R. Thorat³

^{1,2,3}School of Environmental and Earth Sciences Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon, Maharashtra

Research Article

Received: 18.05.2022

Accepted: 28.05.2022

Published: 07.06.2022

ABSTRACT

River and its basin biodiversity are the economical and natural value of Planet Earth are with a rich diversity of life forms, and millions of these living organisms have been well attached by the laws of nature. Plant on the river basin shows its characteristics and regional specification of the climatic system. A study was conducted to assess the status of biodiversity in the submergence zone of Waghur river near Jalgaon in this point of view of ecological components and their biological value. The richness of plant community and diversity study involves the study of species richness, diversity, and land-usepatterns. The present study shows the vegetation represents dry deciduous types, River basin area found 150 plant species were identified of their 30 tree species, 20 shrub species, 80 herb species, and 20 climbers were recorded from the river basin of Waghur

Keywords: Plant Biodiversity, Waghur River Basin, Waghur, Land Pattern, Species.

INTRODUCTION

The river basin is one of the majors diversify and species richness of flora, fauna, birds, and all types of biodiversity it's also economical value to the sustainable development of that area. Human life base of the current global food supply is depending on phenotypical variety of plant species and genotypes with genetic constitution characteristics for cultivation and human nutrition by early farmers (Ebert. et al., 2020).In the recent years, new disputes have reached for the conservation of useful genes for agriculture. Enhanced stress on Sensitive land resources has created a broad threat to biodiversity. As well the Species richness has become a valuable factor of biodiversity estimation. global biodiversity is very often considered in terms of global number of species in each of the different taxonomic groups ((Pullaiah et. al., 2015; Chavan et. al., 2018). India's mega biodiversity countries of the world, holding nearly 7-8% of the recorded species of the world, as well as 4 of the 34 globally identified biodiversity hotspots (Himalaya, Indo-Burma, Western Ghats and Sri Lanka, Sunderland). Traditional knowledge of biodiversity is the glory of Indian over 91,200 species of animals and 45,500 species of plants have been recorded in the ten biogeographic zones of the country (Rao. et al., 2010; Sonawane et al., 2008). In species richness and endemism, India is top position, its more than 300 wild ancestor plants and the diversity of crop plants is the highest. The biodiversity of plants is the genetic wealth of a country. Farmstead represents a land-use pattern involving deliberate management of multipurpose trees and shrubs in intimate association with seasonal vegetables (Fernandes and Nair,1990; Gaikwad and Thorat, 2004). Plant biodiversity of planet Earth is significantly exposer in composition from any that its ancestors would have experienced. Fluctuations in the intensity of the major greenhouse gases (CO₂, CH₄, N₂O) are air-borne pollutants that can also impact plant diversity (Corlett, 2014b). Recent century much interest has been given to diversity

conservation and utilization. Plant biodiversity is an important component of total biodiversity. It has been projected that there exist 5-30 million species of living forms on the Earth, of which 1.5 million have been recognized involving 300.000 plant species (Agrawal. 1999; Sheejan and Thorat 2016). The of occurrence of a particular species in an area is one of the clues of its biodiversity in that area (Haque. et al., 2015).

A study was conducted to assess the status of biodiversity in the submergence zone of waghur river near Jalgaon. In this study, various ecological components were studied for their biological value. It involved studying the richness of plant community, avifauna, aquatic fauna, and mammalian diversity. Biodiversity study involves studying species richness, diversity, and land use pattern of a biological community. Species richness refers to the total number of species, diversity refers to the number and abundance of different species and rarity refers to the total abundance of individual species in the area. For this study emphasis was given on the land use pattern and to find out how many rare, common, and uncommon species are found in the area.

MATERIAL AND METHODS

Methods used to know plant diversity of Waghur river basin: To understand the floristic diversity in the region, a transect consisting of alternate 20 x 20 m quadrats was used for sampling the habitat. Transect length depended on the species composition and diversity. All the trees at or above 10cm diameter at breast height (DBH) on 30cm girth at breast height (GBH) were enumerated at 1.3 meters above ground, identified, or samples collector (whenever possible). If field identification was not possible then it pressed for herbaria for future identification. Additional characteristics like aerophytes, climbers, parasites, any disturbance like lopping, logging, etc., were also noted. Canopy cover was noted, and ground litter quantity was weighed. Shrubs (GBH < 30cm and height >1m) were enumerated in two shrubs guadrates of 5 x 5 m laid diagonally inside 20 x 20m quadrates. Inside each shrub quadrate two 1 x 1m herb plotted (height < 1m) were laid diagonally and studied. Also, information such as ground control using a Global Positioning System (GPS), name of the locality, range of human activities such as lopping, logging, non-timber forest produces (NTFTP), fuel, and litter collections, fire incident, grazing, etc. were noted down. The photographs of different plant species have been presented systematically on the photo sheet in the result and discussion section.

Methods Used: Two methods were used to study in the plant community in waghur river basin is as follows.

 Stratified random sampling technique: In this form of sampling segment is stratified into several sub-segments within these areas.

- Quadrates sampling techniques: this technique involves quantifying vegetation in a non-grid of known measurement.
- Measuring trees and shrubs by plotting quadrates 10 x 10 meter, A1 x 1 meter quadrate was used for herbaceous vegetation sampling.
- All experiments were used for sampling river basin vegetation. In this process, the parameters noted are as follows.
- Species and number of trees, shrubs, herbs, and grasses
- Height and girth at breast height of trees.
- Phenophase (fruiting or flowering stage) of the trees, shrubs, herbs, and grasses

RESULT AND DISCUSSION

During the field study, 150 plant species were identified of their 30 tree species, 20 shrub species, 80 herb species, and 20 climbers were recorded from the river basin of waghur during Feb. 2018 to Jan 2020. The vegetation represents dry deciduous forest. Trees species such as Palash (local name) were the most dominant with associate species such as Arjun, Beheda. Dhooda species were the most dominant. The result obtained for plant species is presented in Table no 1.

Land Use Pattern: Recently increase in areas under non-Agricultural uses was due to a sharp increase in the population of the state. A substantial area from forest area has been put to non-agricultural uses causing negative growth in forest area for the entire study period. Further, it was observed that there has been a higher concentration for land under misc. trees, groves, barren and unculturable land, and land put to non-agricultural uses (Dekha et. al., 2018).

Forest land: The forest in waghur river basin area was dry deciduous with some semi-evergreen elements. The forests have a very poor diversity of trees and shrubs as per the result shown table no 1. The most dominant species was *Cordia dichotoma*. Other associate tree species were *Zizhyphus Mounatina* and *Lemmelia Belleena* the average height was measured up to 10 meters.

The study shows ground flora is abundant especially in the winter season with greater diversity. 15 grass species were recorded among which *Chrysopogon Spp*. was dominant. 39 species of the herb were recorded from the area. Species such as *Cassia tora*, *Indigofera trio*, *Evolvulus Alsionoides*, *Justicia Spp*, *Tephrosia Villosa*, *Vernonea Spp* were more common. Apart from this herb such as *Carallumaadscendens* were noted as rare in waghur area. In the case of the climber, six climbers *spp* were recorded

International Journal on Environmental Sciences 13(1)

among which *Ampelocicus latifolia* was dominant whereas *Gloriosa superba* was rare to this area. Liana like *Butea Superba* has been recorded as shown in the table no 1.

Cultivated fields: According to the locals, part of the land could yield crops throughout the year whereas in some parts the yield was seasonal and water fed. The main crop of this area is cotton, bajara, and jawar. Along with this wheat, udad, chawli, moong, pea and tomatoes were cultivated. At places, there were banana and guvava orchards also. These crops were supplied water from the bore wells owned by the farmers. There was a small patch of teak (*Tectona Grandis*) plantation on some fields.

Wastelands: This area was intermixed with the crop fields, grassland, and forest land in the patches. This area showed signs of frequent grazing. The trees were stunted in growth with an open canopy. The area represents typically bioedaphic forest *i.e.*, dominance of *Butea Monosperma* Spp. Other associate species were *Terminalia Arjuna*, *Phonix Sylvestris*, *Cordia Dichotoma*, *Accacia Nilotica*, *Accacia Leocophloea*, *Zizipus Mauritiana*, and *Anogeissus Latifolia*. Grasses such as *CoixSpp* and *Chrysopogon Spp* were common in this area as.

Open water area: The east, left and right bank of Waghur River were studied for floristic diversity. This area also had a very sparse tree and shrub growth and abundant flora. In the study area 24 herbs species recorded. Dominant species among them were *Sida cordial, Sopubiadelphinifolio,* and *Acanthospermunmhispidium.* 9 species of climber were recorded in the area such as *Hemidesmus Indicus* and *Cyclea Peltata* was common. Amongst the shrubs most common were *Lantana camara, Cassia auriculata,* and *Maytenusheyneaa.* 15 trees species were recorded from the area. The dominant among them includes *Butea monosperma, Accacia nilotica, Terminalia crenulate, Morindapubscems,* and *Azadircta indica.* There was no natural tree growth near the village the species such as *Ailanthus excels* and *Azadircta indica* were recorded. As expected, there were shrubs and climbers near the houses of the village. The observations made during the biodiversity survey are described in the subsequent points;

- The area studied of the river waghur basin does not show the presence of any endemic or endangered plant species. A detailed list of plants studied, and their status is given below in the table.
- As per the records, 393.51 ha of forest area were under submergence. However, the study revealed that a very low percentage of the area can be classified as forest area.

Plant Species	Family	Туре	Abundance
Abelmoschus manihot (L.) Medic	Malvaceae	Herb	F
Abelmoschus pannosum (Forst.f) Schlect	Malvaceae	Tree	F
Abitulon indicum (L.) sweet	Malvaceae	Tree	С
Acacia chundra (Roxb ex. Rottle) wild	Mimosaceae	Tree	С
Acacia leucophloea (Roxb.) wild	Mimosaceae	Tree	С
Acacia nilotica (L.) spp indica (bth.) Brenam	Mimosaceae	Tree	F
Acalypha malbarica Muell-Arg	Euphorbiaceae	Herb	VC
Acanthosprmumhispidum DC.	Asteraceae	Herb	С
Achyranthes aspera L.	Amaranthaceae	Herb	R
Aegle maemelos (L) DC.	Rutaceae	Tree	R
Alternanthera sessile (L) DC.	Amaranthaceae	Herb	С
Alysicarpous tetragonolobus Edgew.	Fabaceae	Herb	С
Ampelociccus latifolia (Roxb.) planch	Vitaceae	Climber	VC
Andropogon pumilus Roxb.	Poaceae	Herb	VC
Anogeissus latifolia (Roxb ex DC) wall	Combretaceae	Tree	С
Apludamutica L.	Poaceae	Herb	VC
Areva lantana (L.) A. L. Juss	Amaranthaceae	Herb	С

CONCLUSION

Table 1: Showing list of plant species in the entire study area.

Argyreia sericea Dalz.	Convolvulaceae	Climber	F
Aristida adscensionis L.	Poaceae	Herb	VC
Azadirchta indica (L.)Delile	Meliaceae	Tree	С
Azanza lampas Alef.	Malvaceae	Herb	R
Balanites aegyptiaca (L.) Delile	Balanitaceae	Shrub	VC
Barlerialawii T.	Acanthaceae	Herb	С
Bauhinia racemosa lam.	Caesalpinaceae	Herb	С
Biophytumsensitivum DC.	oxylidaceae	Herb	VC
Boerhaviadiffusa L.	Nyctaginaceae	Herb	VC
Boswellia serrata Roxb. Ex colebr	Burseraceae	Tree	С
Brachiarariaeruciformis (J.E.Sm) Erseb	Poaceae	Hreb	VC
Bridelia retusa (L.) Spr.	Euphorbiaceae	Tree	С
Butea monosperma (Lam.) Taub	Fabaceae	Tree	VC
Butea superb Roxb.	Fabaceae	Climber	R
Caesaria elliptica Willd	Flacourtiaceae	shrub	F
Caesuliaaxillaris Roxb.	Asteraceae	Herb	F
Calatropisprocera (alit) R. Br.	Asclepiadaceae	shrub	R
Capparis decisua (Forsk.) edgeworth	Cappariaceae	Shrub	F
Capparius spinosa L	Cappariaceae	Shrub	F
Carallumaadscendens (Roxb.) R. Br	Asclepiadaceae	Herb	R
Cardiospermum microcarpa Kunth	Sapindaceae	Climber	F
Cassia auriculata L.	Caesalpinaceae	Shrub	VC
Cassia fistula L.	Caesalpinaceae	Tree	R
Cassia Pumila Lam.	Caesalpinaceae	Herb	VC
Cassia tora L.	Caesalpinaceae	Herb	VC
Cayratiatrifolia (L.) Domin	vitaceae	Climber	F
Celastruspaniculatus Wild.	Celastraceae	Climber	F
Chloris barbata Swartz.	Poaceae	Herb	С
Cissus woodrowii Santapau	Vitaceae	Climber	С
Cleome monophylla L.	Cleomaceae	Herb	С
Cleome viscosa L.	Cleomaceae	Herb	С
Cocculus hirsutus (L.) Diels	Menispermaceae	Herb	С
Coixgangantea Koen ex Roxb	Poaceae	Herb	VC
Commelina benghalnesis L.	commelinaceae	Herb	С
Corchorus aestuans L.	Tiliaceae	Herb	С
Cordia dichotoma Frostf.	Cordiaceae	Tree	С
Crysopogan fulvus (Spr.) Chiov.	Poaceae	Herb	VC
<i>Cycleapeltata</i> (Lam.) Hook and Thoms.	Menispermaceae	Climber	R
Cynodondactylon pers.	Poaceae	Herb	F
Cyperus rubicundusvahl.	Cyperaceae	Herb	F

Desmodiumheterocarpum (L.) DC.	Fabaceae	Herb	С
Desmodiumgangeticum (L.) DC	Fabaceae	Herb	С
Discoriabulbifera L.	Dioscoraceae	Herb	С
Discoria pentaphylla L.	Dioscoraceae	Climber	R
Diospyros melanoxylon Roxb.	Ebenaceae	Tree	С
Diplocyclospalmatus (L.) C. Jeffry	Cucurbitaceae	Climber	F
Dolichandrone falcate Seem.	Bignoniaceae	Tree	R
Duranta spp.	Verbenaceae	Shrub	F
Elephantopusscaber L.	Asteraceae	Herb	R
Eluesineindica (L.)	Poaceae	Herb	R
Eluesineindica (L.) Gaertn.	Poaceae	Herb	С
Enicostemaaxillare (Lam.) Raynal	Gentianaceae	Herb	С
Euphorbia thymifolia L.	Euphorbiaceae	Herb	С
Euphorbia geniculata Orteg.	Euphorbiaceae	Herb	С
Evolvulusalsinoides (L.) L.	Convolvulaceae	Herb	VC
Flacoutia indica (Burm.f.) Merr.	Flacourtiaceae	Shrub	F
Gloriosa superb L.	Liliaceae	Climber	R
Grewia tiliaefolia var tiliaefolia Vahl.	Tiliaceae	Shrub	С
Helicteresisora L.	Sterculiaceae	Shrub	F
Hemidesmus indicus (L.) Schultes	Asclepiadaceae	Climber	F
Heteropogoncontortus (L.) P. Beauv.	Poceae	Herb	С
Indigofera linifolia (L.f.) Retz.	Fabaceae	Herb	VC
Indigofera triata L.	Fabaceae	Herb	VC
Ipomea eriocarpa R.Br.	convolvulaceae	Climber	F
Ipomea mauritiana Jacq.	convolvulaceae	Climber	F
Justicia quinqueangularis var peploides Koen.	Acanthaceae	Herb	VC
Justicia simplx D.	Acanthaceae	Herb	VC
Lagaceamollis Cav.	Asteraceae	Herb	F
Lanneacoromandelica (Haut.) Merrill	Anacardiaceae	Tree	F
Lantana camara var. aculeate (L.) Moldenke	Verbanceae	Shrub	С
Lepidagathis cristata Willd	Acanthaceae	Herb	R
Leucas cephalotes (Roxb.) Spr.	Lamiaceae	Herb	С
Leucas zeylanica (L.) R. Br.	Lamiaceae	Herb	С
Luffa acutangula (L.) Roxb. Var amara (Roxb) C.B.C.L	Cucurbitaceae	Climber	R
Malva coromandeliana L.	Malvaceae	Herb	R
Mangifera indica L.	Anacardiaceae	Tree	С
Maytenusheyneana (Roth) Raju and Babu	Celastraceae	Shrub	VC
Melanocenchrisjacquemontii Jaub.	Poaceae	Herb	VC
Mimosa hamata Wild	Mimosaceae	shrub	С
Mitragynaparvifolia (Roxb.) Korth.	Rubiaceae	Tree	С

Morindapubescens J.E. Sm.	Rubiaceae	Tree	С
Moringa concanesis Nimmo	Moringaceae	Tree	С
Mucuna pruriens (L.) DC.	Fabaceae	Climber	R
Neonitisrheedii (Wall ex Wight and Arn.) W.H. Lewis	Rubiaceae	Herb	F
Opuntia spp.	Euphorbiaceae	Shrub	R
Orthosiphon pallidus Royle ex Bth	Lamiaceae	Herb	С
Oscimumgratissium L.	Lamiaceae	Herb	С
Oxalis carniculata L.	Oxylidaceae	Herb	С
Panicum notatum Retz.	Poaceae	Herb	С
Parthenium hysterophorus L.	Asteraceae	Herb	С
Phonix sylvestris (L.) Roxb.	Asteraceae	Tree	F
Phyllanthus fraternus Webster	Euphorbiaceae	Herb	С
Plumbago zeylanica L.	Plumbaginaceae	Herb	С
Pulicariawightiana (DC.) C. B. Cl.	Asteraceae	Herb	С
Pupalialappacea (L.) A. L Juss	Amaranthaceae	Herb	С
Rhynchosiarothi Bth ex Ait.	Fabaceae	Herb	R
Scrophulariachinesis L.	Scrophulariaceae	Herb	F
Senecio dalzellii C. B. Cl	Asteraceae	Herb	С
Sida cordata (Burm. f.) Borssum	Malvaceae	Herb	С
Sida spinosa L.	Malvaceae	Herb	С
Sitaria pumila (poir) R and S	Poaceae	Herb	VC
Solanum nigrum L.	Solanaceae	Herb	F
Sopubiadelphinifolia (L.) D. Don	Scrophulariaceae	Herb	С
Spermacocepusilla Wall	Rubiaceae	Herb	VC
Spoindios pinnata (L.f.) Rurz.	Anacardiaceae	Tree	R
Sporobolus coromandelianus (Retz.) Kunth	Poaceae	Herb	С
Tamarixericoides Rottl	tamaricaceae	herb	С
Tectona grandis L.	Verbenaceae	Tree	С
Tephorsiavillosa (L.) pers.	Fabaceae	Herb	VC
Terminalia arjuna (Roxb ex DC.) Wight & Arn	Combretaceae	Tree	С
Terminalia bellerica (Gaertn.) Roxb.	Combretaceae	Tree	С
Terminalia crenulata Roth.	Combretaceae	Tree	F
Themeda quadrivalvis (L.) O.Ktze	Poceae	Herb	С
Tragia involucrate L.	Euphorbiaceae	Climber	F
Tribulus terrestris L. H.	Zygophyllaceae	Herb	С
Tricodesma indicum (L.) R. Br.	Boranginaceae	Herb	С
Tridax procumbens L.	Asteraceae	Herb	С
Triumphetta rotundifolia L.	Tilaceae	Herb	VC
Triumphettapilosa Roth	Tilaceae	Herb	С
Tylophoradalzellii	Asclepiadaceae	Herb	С

Var fimbriata (Wall.) Grav and Mayur	Asclepiadaceae	Herb	С
Vernonia cinerea (L.) less	Asteraceae	Herb	С
Vigna trilobata (L.)Verdc.	Fabaceae	Herb	С
Vitex nifundo L	Verbenaceae	Shrub	С
Wrightia tinctoria (Roxb.) R. Br.	Apocynaceae	Tree	R
Xanthium strumarium L.	Asteraceae	Herb	VC
Zizipusmauritiana Lamk.	Rhamnaceae	Tree	С
Zizipus rugosa Lamk.	Rhamnaceae	Tree	R

Abundance code: C= common, F= Frequent, VC= very common, R= rare

A study was conducted to assess the status of biodiversity in the submergence zone of Waghur basin near Jalgaon. In the present study, various ecological components were studied for their biological value. It involved studying the richness of plant community, avifauna, aquatic fauna diversity. The vegetation of any area and the habitat types found there is a principal determining factor in the biodiversity of an area. The dominant vegetation type in the submergence area is agricultural fields. However, these do not have varied biodiversity from the point of view of vegetation. They support bird communities akin to grassland birds and such as wren-warblers, munias and pipits.

The diversity of other biotic components in this area is also not very high. The other main habitat types are scrub, grassland, open forest, and rivera in forest. The scrub forest and grassland are a result of the degradation of the forests and are kept in that state by biotic factors such as lopping and grazing. Scrub and seasonal grassland of the type found in the study area is a common habitat found in degraded areas and wasteland all over peninsular India. So, it cannot be said to be a very valuable area from a biodiversity point of view. The forests are of dry deciduous type. They are also considerably degraded by lopping and cutting and show no structural complexity in terms of vegetation layers. These forests are dominated by *Butea monosperma*. Some vegetation diversity in the forest was found only in a small patch in the Gangapuri area.

REFERENCES:

- 1. **Agrawal, K. C.** 1999. Biodiversity Agro botanical. Vyas nagar, New delhi.
- Chavan Tukaram P., Harshad R. Kakade, Abhijit S. Thorat and Thorat S. R. (2018): The Status of Sediment and Heavy Metal Pollution in Waghur River of Jalgaon in Khandesh Area of Maharashtra, India, International Journal on Environmental Sciences 9 (1): 9-14, April Special Issue 2018, ISSN No.: 0976-4534; UGC Approved Journal No. 7783.

- 3. **Corlett, R.** (2016). Plant Diversity in a Changing World: Status, Trends, and Conservation Needs. Plant Diversity. 38. 10-16. 10.1016/j.pld.2016.01.001.
- Corlett, R.T., 2014b. Forest fragmentation and climate change. In: Kettle, C.J., Koh, L.P. (Eds.), Global Forest Fragmentation. CAB International, Wallingford, pp. 69-78.
- Douglas Gollin. Conserving genetic resources for agriculture: economic implications of emerging science Food Security (2020) 12:919–927 https://doi.org/10.1007/s12571-020-01035.
- Ebert, A.W.; Engels, J.M.M. Plant Biodiversity and Genetic Resources Matter! *Plants*. 2020, *9*, 1706. https://doi.org/10.3390/plants9121706.
- 7. **Fernandes, E.C.M. and Nair, P.K.R.,** 1990. An evaluation of the structure and function of tropical homegardens. *Agricultural Systems*. 21: 279-310.
- 8. Gaikwad S. R., S. R. Thorat and T. P. Chavan. (2004): Diversity of phytoplankton and zooplankton with response to pollution status of river Tapi in North Maharashtra Region. *J. Curr. Sci.* 5(2): 749-754.
- 9. **Haque, Md. Maksudul, Mannan, Md. Abdul, Saiful, Mohammad** (2015) Plant-Biodiversity at Ajmerigang Haor Homesteads of Bangladesh.
- 10. https://www.cbd.int/countries/profile/?country=in
- 11. **N. Deka, J.P. Hazarika, P.P. Bora and R. Buragohain** (2018) Change in Land Use and Cropping Pattern in Assam: An Economic Analysis, Economic Affairs, Vol. 63, No. 1, pp. 39-43.
- 12. Pullaiah, T. & Bahadur, Bir & Krishnamurthy, Kulithalai. (2015). Plant Biodiversity. Plant Biology and Biotechnology: Plant Diversity, Organization, Function, and Improvement. 1. 177-195. 10.1007/978-81-322-2286-6_6.
- Rao G.R., Subash Chandran M.D. and Ramachandra T.V., (2010). Plant Diversity in the Sharavathi River Basin in Relation to Human Disturbance. *The Indian Forester. Vol. 136, No. 6, June* 2010, Pp. 775-790.

42

- 14. **Sheejan P. G. and S. R. Thorat** (2016): Studies on Phytoplankton of River Waghur in Jalgaon in Area of Khandesh Region, (MS) India. *International Journal in Management and Social Science*. Vol-4 Issue-07 Pp. 38-43. ISSN: 2321-1784.
- 15. Sonawane A. C., Ram Mridula B. and Thorat S. R. (2008): "Study of medicinal plants in North Maharashtra University campus of Jalgaon city in Khandesh area of Maharashtra, India", *J. of Biosciences Biotechnology Research Asia*, Vol. 5(2), Pp 741-746. ISSN: 0973-1245.